Using open science tools for water quality management in the Peconic Estuary Watershed

Sarah Schaefer

Peconic Estuary Partnership

Gerold Morrison

CoastWise Partners, LLC

Marcus Beck

Tampa Bay Estuary Program

What we'll cover today

- Some open science tools for analyzing 'censored' water quality data
- Initial water quality management targets adopted by PEP
- Open science tools for tracking and reporting progress on meeting the adopted targets
- Next steps

Using R tools to analyze censored water quality data

- 'Censoring' occurs when data points are known to fall within a certain range, but their actual values are unknown.
- It's a common issue in water quality data sets:
 - Secchi depth values flagged as 'visible on bottom', and bacterial counts flagged as 'too numerous to count' are termed 'rightcensored'.
 - Laboratory results flagged as 'below detection limit' or 'below practical quantitation limit' are termed 'leftcensored'.
- Can lead to biased parameter estimates and misleading results in hypothesis tests.

Fortunately, statistical methods for addressing these issues are available from other fields

- Medicine (clinical trials) estimating mean or median survival times, and testing for differences in survival times between treatments. (Right-censored data, because survival times are unknown for patients who are still alive at the end of the trial.)
- Engineering/manufacturing analogous situation when analyzing time-tofailure data for machines or components. (Right-censored data, because time-tofailure is unknown for parts that are still functioning correctly at the end of the trial.)
- Environmental health/occupational exposure studies Results of many samples are reported as 'below detection limit' (left-censored data).

Some R packages for analyzing censored (and non-censored) data

- **EnvStats** a package for 'environmental statistics, including US EPA guidance'
 - Available at https://cran.r-project.org/web/packages/EnvStats/index.html.
 - Covers most (but not all) situations encountered with environmental sampling data.
 - Developed by statisticians with water quality and hazardous waste site cleanup experience.
- **Survival** a statistical package for analyzing clinical trial data
 - Available at <u>https://cran.r-project.org/web/packages/survival/index.html</u>.
 - Focused on right-censored data from clinical trials.
 - Developed by statisticians at major research hospitals.

Peconic Estuary Partnership's Water Quality Monitoring Strategy

S:\PEP\GIS\PE_Boundary\PE Boundary.mxd

Coordinate System: NAD 1983 UTM Zone 18N

PEP Technical Advisory Committee Recommendations

Approved by PEP Management and Policy Committees on February 5th, 2020

Adopt provisional targets for water clarity (Secchi disk depth), chl-a concentration, and dissolved oxygen (DO).

Median Secchi disk depths should be 2 meters (m) or greater during the April 1 through October 31 growing season.

Median chlorophyll-a concentrations should be no greater than 5.5 ug/l during the April 1 through October 31 growing season.

Dissolved oxygen concentrations should comply with New York State's acute (never less than 3 mg/l) and chronic (> 4.8 mg/l as daily average in 90% of samples) dissolved oxygen criteria.

Primarily based on targets proposed in the <u>Suffolk</u> <u>County 2020 Subwatersheds Wastewater Plan</u>.

Reporting and Management Segments: Eastern, Central and Western Zones

Report results on an annual basis.

Use 'stoplight graphics' for public-facing documents, collating data by main stem estuary segment.

Track and report water temperature, salinity, pH and harmful algal blooms on an annual basis as the adoption of numerical targets are not currently anticipated for these parameters.

Secchi depth and chlorophyll-a targets in the three Peconic Estuary reporting zones for the years 1976 - 2018.

Estuary	201	Median	Median	Estuary	201	Median	Median	Estuary	201	Media
Segment	ΥY	Chia	Secchi Depth	Segment	ŶŶ	Chia	Secchi Depth	Segment	ŶŶ	Chia
		(µg/L)	(ft)	5		(µg/L)	(ft)			(µg/L
West	1976	22.2	3.5	Central	1976			East	1976	
West	1977		6.0	Central	1977			East	1977	
West	1978		5.3	Central	1978			East	1978	
West	1979		5.0	Central	1979			East	1979	
West	1980			Central	1980			East	1980	
West	1981			Central	1981			East	1981	
West	1982			Central	1982			East	1982	
West	1983			Central	1983			East	1983	
West	1984			Central	1984			East	1984	
West	1985		2.5	Central	1985			East	1985	
West	1986		4.0	Central	1986		5.0	East	1986	
West	1987		4.0	Central	1987		3.5	East	1987	
West	1988	12.6	3.5	Central	1988	12.0	4.5	East	1988	7.5
West	1989	5.0	7.0	Central	1989	4.6	7.0	East	1989	4.5
West	1990	4.2	5.0	Central	1990	3.5	7.0	East	1990	3.0
West	1991	6.0	3.5	Central	1991	8.6	3.3	East	1991	5.0
West	1992	4.0	4.0	Central	1992	3.2	5.5	East	1992	2.5
West	1993	3.8	4.5	Central	1993	3.0	6.5	East	1993	2.8
West	1994	3.5	5.5	Central	1994	2.7	7.5	Fast	1994	2.4
West	1995	6.9	4.0	Central	1995	4.8	5.5	Fast	1995	2.9
West	1996	7.4	5.5	Central	1996	3.9	7.5	Fast	1996	3.0
West	1997	7.8	5.5	Central	1997	4.1	7.5	Fast	1997	3.2
West	1998	3.8	5.5	Central	1998	2.6	7.5	Fast	1998	2.1
West	1999	3.4	5.5	Central	1999	2.2	7.5	East	1999	1.6
West	2000	3.2	5.0	Central	2000	1.6	7.0	East	2000	1.2
West	2001	4.1	5.0	Central	2001	2.4	7.0	East	2001	1.9
West	2002	3.8	5.5	Central	2002	3.1	7.0	East	2002	2.5
West	2003	4.3	5.5	Central	2003	2.3	11.0	East	2003	2.4
West	2004	4.4	5.0	Central	2004	2.5	8.0	East	2004	2.8
West	2005	3.9	5.5	Central	2005	1.9	8.0	East	2005	1.5
West	2006	4.8	6.0	Central	2006	2.9	10.0	East	2006	2.7
West	2007	4.7	6.0	Central	2007	3.8	10.0	East	2007	3.3
West	2008	4.8	5.5	Central	2008	2.9	8.0	East	2008	2.4
West	2009	4.3	5.0	Central	2009	2.5	8.0	East	2009	2.2
West	2010	9.0	5.0	Central	2010	4.5	6.5	East	2010	2.8
West	2011	4.9	5.0	Central	2011	2.8	7.5	East	2011	2.4
West	2012	3.9	5.0	Central	2012	2.7	6.0	East	2012	2.1
West	2013	5.1	7.0	Central	2013	3.1	8.0	East	2013	2.4
West	2014	3.2	6.0	Central	2014	2.3	7.0	East	2014	1.9
West	2015	2.6	5.5	Central	2015	1.9	7.0	East	2015	1.5
West	2016	3.6	4.5	Central	2016	2.4	6.0	Fast	2016	2.2
West	2017	6.7	4.0	Central	2017	3.3	6.0	East	2017	2.1
West	2018	5.4	5.0	Central	2018	2.3	6.0	Fast	2018	2.1
	2010			Central	2010	2.0	0.0	Last	2010	2.5

Median

Secchi Depth (Fft)

---6.5

6.0 8.5

8.5 6.0

7.5 7.5 9.0

7.0 10.0 10.0

12.0 11.0 9.0

10.0 8.5 12.0 9.5 11.0 10.0 10.0

11.0

10.0 8.0 11.0

9.0 10.0 8.0 8.0 8.0

Data source: Suffolk County Department of Health Services

As an initial target for pathogens, adopt the Enterococcus threshold currently used by the County and State to determine estuarine/marine swimming beach closures.

Enterococcus counts at estuarine/marine swimming beaches should not exceed 104 colony forming units per 100 milliliter water sample (104 cfu/100ml).

New standards are currently under State review. Once new standards are in place, target will be updated.

Example stoplight graphic for Enterococcusrelated beach closures for 2010-2018

Beach Name	2010	2011	2012	2013	2014	2015	2016	2017	2018	Subtotals
Alberts Landing Beach	0	0	0	0	0	0	0	0	1	1
Camp Blue Bay Beach	0	0	0	0	0	0	0	0	1	1
Camp Quinipet Beach	0	1	0	0	0	2	1	0	1	5
Clearwater Beach	0	0	0	0	0	0	0	0	1	1
Cornell Cooperative Extension Marine Center Beach	0	0	0	0	0	0	0	0	0	0
Crescent Beach - Shelter Island	0	0	0	0	0	0	0	1	0	1
Culloden Shores Beach	0	0	0	0	0	0	0	0	0	0
Devon Yacht Club Beach	0	0	0	0	0	0	1	0	1	2
East Lake Drive Beach	G	0	0	0	0	0	0	0	0	0
Fifth Street Park Beach	0	0	0	0	0	2	0	2	1	5
Fleets Neck Beach	0	1	0	0	0	0	0	0	0	1
Foster Memorial Beach	0	0	0	0	0	0	0	0	0	0
Founders Landing Beach	2	1	1	1	0	0	1	3	1	10
Goose Creek Beach	1	0	1	0	0	0	0	0	0	2
Havens Beach	2	1	0	0	- 0	0	0	0	0	3
Maidstone Beach	0	0	0	1	0	0	0	- 0	0	1
Meschutt Beach	0	0	1	0	0	0	1	0	1	3
Nassau Point Cause way Beach	0	1	0	0	0	0	0	1	1	3
New Suffolk Beach	0	1	0	0	0	0	0	0	0	1
Norman E. Klipp Park Beach	0	0	0	0	1	0	0	1	0	2
Perlman Music Camp Beach	0	0	0	0	0	0	1	0	1	2
Pridwin Hotel Beach	1	1	0	0	0	0	0	0	1	3
Shelter Island Heights Beach Club Beach	0	0	1	0	. 0	0	0	0	1	2
Silver Sands Motel Beach	0	1	0	1	0	0	0	0	2	4
South Jamesport Beach	1	0	1	0	0	0	0	0	2	4
Southampton Peconic Beach & Tennis Club Beach	0	0	0	1	0	0	0	0	0	1
Veteran's Memorial Park Beach	0	1	0	2	0	0	0	0	1	4
Wades Beach	0	0	0	0	0	0	0	1	0	1

Green = zero closures Yellow = one closure Red = two or more closures

Data source: Suffolk County Department of Health Services

Peconic Estuary Monitoring Collaborative

Function as a sub-committee of the Technical Advisory Committee to help advise the completion of the Next Steps outlined in the Water Quality Monitoring Strategy.

Collaborative composed of main water quality monitoring programs in the Estuary.

A goal for 2020 is to use open science tools to track and report progress toward water quality goals- bridge the divide between scientific products and management needs.

Scientific products

Open Science at TBEP

Progress Towards Meeting Regulatory Goals An Initiative of the Tampe Bay Nitrogen Management Consortium to Maintain

FDEP Criteria:

197

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1001

1992

1993

1994

1995

1996

1997

1998

1990

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

Tampe Bay Estuary

aintaining Reasonable Assurance & TMDL Compl OTB HB MTB LTB In Newsmber 2017, the Florida Department of Environmental Protocilon (FCEP) accepted the 2017 Reasonable Assurption Unitate (2017 R& Undetex as submitted by TREP in partnership with the Tarson Ray Nikrosen Management Conservation FDEP concluded that the RA Update demonstrated both attainment of seagraps targets and total nikogen numeric numeric orienta for 2012 2016. During 2010, all bay segments, excluding Oin Tampa Bay, were in compliance with the FDEP regulatory orders for chlorophyli a concentrations (Figure 5). The third RA compliance assessment report for the 2017 2021 period was submitted March 2000. 2019 Chi-a Monthly Variation Compared to 1974-2018 Ottoophylitia concentrations were evaluated within the bay on a monthly basic during 2019 and compared to prior years leviols (Figure 6). Elevisied concentralizers in Old Tamps Bay were primarily due to Pyrcalixium behamones during the later Summer months, Lower Tamps Boy also showed elevated concentrations in August 2019, potentially due to non-harmful aloar blooms. E 1975-2018 · 2019 ····· +2 to flante encedance? Old Tampa Bay Hillsborough Bay 40-83 pr L 15 mg L-7 Middle Tampa Bay Lower Tampa Bay 5.1 pg L-2 30-15 pg L-1 Figure C. ChicrophyRis monthly averages from 1675-2018 for the four bay segments. The monthly averages for 2018 are shown in red Historic chlorophyll a annual georges for the four bay segments. npa Bay Seagrass Recovery Targa Eq/s intal seagnes coverage remains show the recovery goal though a slight docrasse was observed from 2016 to 2018. The 2018 barwide coverage was estimated at 40,682 some (Figure T). As in 2016, coverage remains above the target (36,000 acres) and the estimated historic coverage of the 1950s (40,420 acros). The rest SWPWMD coverage extension will be developed from senial photographs acquired over the winter 2019 20 period. following the ariansive sod side event observed throughout 2018 india: the 2518 coverage estimate was developed prior this event). More information on assessments of the Bay's seagness recovery using turnect monitoring data Figure 7: Seeptage astimutes from man be Kurst in TBEP potential publication #58-16 and #09-17 1950 2018 (Source: TBEP & SWPWMD) Figure 5: Attainment of bay asprents for chiprophyll offere 2. Diff offset transported completes assessment assessed for Deserved 2, advis 4, 2010, 1927 Technik Reported to Deserve and Res Deserved as Deserved a Deserved as Deserve from 1975 lp 2019 Mail: mbeck@iben.org Dashboard: https://shiny.tbaplach.org/wq-dash

and Restore the Bay's Resources

- ETTE - -----Internal Address tbeptools Links Witness Saulus code al the latest writes A package Kr. Terus He Estary Propert Anders: Peers see the equato he and inscriptor. Report a fact of They shall contract License ART + NAVESTREE Community Installation Developers. The paintings can be statemed from Gillian Internet Taxa Autor registers invitil perhapse (mechanist") tent we errinde christing gibbar, they beth therballs takes i Dev status Issues and suggestions (10) - C 0.000 Financial separt any insum and suggestions are the insum has for the regulatory A gate to porting issues can be hand have. Contraction of the local division of the loc Contributing Passe you be combuling pedetters in any charges in pel separate

The Old Way vs. The New Way

Tech Transfer

- Import raw data, estimate indicators, and report outcomes.
- Foundational methods for indicator reporting.
- Freely available on GitHub for anyone to view source code, download for use, and make requests for additions.

pepreporting R PACKAGE

Introduction

Installing pepreporting

Begin by installing the package from GitHub. The source code is available on the tbep-tech GitHub group web page: https://github.com/tbep-tech/pepreporting.

First, install the devtools package, load devtools, then install and load pepreporting. Note that pepreporting only needs to be installed once, but it needs to be loaded every new R session (i.e., library(pepreporting)).

```
install.packages('devtools')
library(devtools)
install_github('tbep-tech/pepreporting')
library(pepreporting)
```

Reporting and Next Steps

show plotlypep(rawdat, bay segment = 'Western') Median Chl-a (ug/L) 8nnual Median ····· Threshold Chlorophyll-a Outcome Secchi Median Secchi (ft) 10-8-

Chlorophyll	Light attenuation outcomes							
outcomes	0	1	2	3				
0	Green	Yellow	Yellow	Yellow				
1	Yellow	Yellow	Yellow	Red				
2	Yellow	Yellow	Red	Red				
3	Yellow	Red	Red	Red				

- Graphs and figures from existing water quality data sets.
- Analyze spatial divisions/segments and application of targets in Estuary.
- Develop Stoplight graphic for public-facing documents, update annually.
- Jointly consider chlorophyll-a and water clarity endpoints, duration and magnitude of exceedance.
- Annual water quality reporting.
- Pliable foundation to adjust thresholds, data and reporting methods.

Reporting and Next Steps

Track progress towards CCMP goals and inform management efforts for 2020 and beyond.

now_matrixpep(dat	, asreact = TR	UE, nrows = 8)		show_matrixpep(da	<pre>show_matrixpep(dat, asreact = TRUE, nrows = 8)</pre>					
Year	Western	Central	Eastern	Year	Western	Central	Eastern			
1990	yellow	green	green	2006	yellow	green	green			
1991	yellow	yellow	yellow	2007	yellow	green	green			
1992	yellow	yellow	green	2008	yellow	green	green			
1993	yellow	green	green	2009	red	green	green			
1994	yellow	green	green	2010	red	yellow	green			
1995	red	yellow	green	2011	yellow	green	green			
1996	red	green	green	2012	vellow	vellow	green			
1997	red	green	green	2013	vellow	green	green			
30 rows		Previo	ous 1 2 3 4 Next	17, 24 of 30 rows	a second	Pravi	one 1 2 3 4 N			
Year	Western	Central	Eastern	47-24 01 50 10 45		11001	003 1 2 5 4 1			
1998	yellow	green	green	Year	Western	Central	Eastern			
1999	yellow	green	green	2014	green	green	green			
2000	yellow	green	green	2015	vellow	green	green			
2001	yellow	green	green	2016	vellow	vellow	green			
2002	yellow	green	green	2017	and	vellow	oreen			
2003	yellow	green	green	2017	and the second	yellow	green			
2004	yellow	green	green	2018	yenow	yenow	green			
2005	yellow	green	green	2019	yenow	green	green			
9.16 of 30 rouse		Prav	ionis 1 2 3 4 Next	25-30 of 30 rows		Previo	ous 1 2 3 4 7			

Next

Previous 1 2 3 4 Next

Thank you!

Sarah Schaefer Program Coordinator, NEIWPCC Environmental Analyst Peconic Estuary Partnership <u>Sarah.schaefer@suffolkcountyny.gov</u> Peconicestuary.org

Gerold Morrison CoastWise Partners, LLC. <u>Gerold.morrison@gmail.com</u>