

Task 2B Report: TAC Workshop Summary, Recommended Water Quality Targets and Templates for Reporting Monitoring Results

December 16, 2019

Prepared for: Peconic Estuary Program Riverhead County Center 300 Center Drive, Room 204N Riverhead, NY 11901

Prepared by: CoastWise Partners Parrish, FL and Annapolis, MD

Disclaimer

The project is funded by an agreement awarded by the U.S. Environmental Protection Agency to the New England Interstate Water Pollution Control Commission in partnership with the Peconic Estuary Program. Although the information in this document has been funded wholly or in part by the United States Environmental Protection agency under agreement CE97230303 to NEIWPCC, it has not undergone the Agency's publications review process and therefore, may not necessarily reflect the views of the Agency and no official endorsement should be inferred. The viewpoints expressed here do not necessarily represent those of Peconic Estuary Program, NEIWPCC, or EPA, nor does mention of trade names, commercial products, or causes constitute endorsement or recommendation for use.

I. TAC Workshop Summary

During its December 4, 2019, water quality monitoring workshop the PEP TAC identified the following recommendations which the group wishes to forward to the PEP Management Committee for its consideration:

- Adopt provisional targets for water clarity (Secchi disk depth), chlorophyll-*a*, and dissolved oxygen (DO) as proposed in the Suffolk County (2019) Subwatersheds Wastewater Plan (SWP):
 - Median Secchi disk depths should be 2m or greater during the April 1 through October 31 growing season;
 - Median chlorophyll-*a* concentrations should be no greater than 5.5ug/l during the April 1 through October 31 growing season; and
 - Dissolved oxygen concentrations should comply with New York State's acute (never less than 3 mg/l) and chronic (> 4.8 mg/l as daily average in 90% of samples) DO criteria.
- As an initial target for pathogens, adopt the existing threshold for fecal indicator bacteria (*Enterococcus*) that is used by Suffolk County to determine swimming beach closures. (*Enterococcus* counts at estuarine/marine swimming beaches should not exceed 104 colony forming units per 100 milliliter water sample [104 cfu/100ml]).
- Adopt three estuary segments (west, central and east; shown in Fig. 1 below) as reporting/ management units, based on chlorophyll-*a* concentrations and Secchi depths observed at Suffolk County Department of Health Services (SCDHS) monitoring stations in each segment.
- Use 'stoplight graphics' (green = target met; red = target not met) for public-facing documents, collating data by estuary segment. Update annually as soon as monitoring data are available from the previous year. Where possible, also include a yellow (intermediate) category in each stoplight graphic to reflect small-magnitude and/or short-duration failures to meet targets. Partial approaches for doing so with the Secchi depth, chlorophyll-*a* and *Enterococcus* targets are outlined below.
- Track and report water temperature, salinity, pH and HABs on an annual basis (adoption of numerical targets is not currently anticipated for these parameters).
- Finalize and adopt PEP water quality targets for pathogens, water clarity (Secchi depth), and chlorophyll-a and DO concentrations by late summer, in time for September 2020 PEP conference.

The TAC also identified the following issues to be addressed prior to the September conference:

- Determine whether the provisional targets (e.g., for Secchi depth and chl-*a* concentration) are appropriate for all three estuary segments, or if segment-specific targets may need to be developed.
- Identify feasible and cost-effective methods for monitoring diel variations in DO at multiple locations within the estuary. Deployable continuous monitoring instruments have become more affordable in recent years and may be an option. It may also be possible to use statistical

methods (such as regression analyses) to estimate daily minimum DO concentrations based on values observed at the SCDHS stations, which are measured during daylight hours, typically between mid-morning and mid-afternoon.

- Examine potential elements of an 'early warning system' (e.g., using hydrographic parameters such as salinity, DO, water temperature, pH), which could be used to alert decision-makers and the public to anticipated water quality issues such as fish kills and HABs.
- For HABs, use the maps prepared by Stony Brook University and TNC to track and report blooms in the estuary. Additional work will be needed to develop methods for reporting and tracking cyanobacterial HABs in freshwater bodies within the watershed.
- Issues related to shellfish bed closures and pathogen-related TMDLs will need to be resolved at the state and federal levels before PEP targets can be adopted for shellfish harvesting areas.
- Explore the development of a tiered reporting system, summarizing water quality conditions on a broad scale (e.g., for the three proposed estuary segments) and also identifying problem areas in individual sub-watersheds or embayments. The PEP Annual Workplan could potentially be used to address water quality issues in localized areas within each segment.
- Consider whether annual freshwater inflows ('hydrologic loads') to the estuary should be an element of tracking and reporting, and perhaps used to 'normalize' estimates of annual nutrient loads with respect to annual freshwater inflows.
- Consider additional indicators that may need to be tracked and reported, such as the spatial distribution of nuisance macroalgae blooms, suitability of water quality for spawning and development of diadromous fish, and tissue levels of mercury and other potential toxins in river otters and other wildlife.

II. Correction

As noted during the December 4 TAC meeting, information about the locations of SCDHS water quality monitoring stations (their distances down-estuary from the Peconic River dam) that was included in an earlier CoastWise Partners report (the November 5, 2019 Background report) was incorrect. That information has been corrected in the current report, in Figures 2 and 3 below and in the station summary table provided in Appendix A.

III. Proposed management/reporting areas for the Peconic Estuary

Based on an evaluation of Secchi disk depths and chlorophyll-*a* concentrations reported by the SCDHS for the years 2009 through 2018, CoastWise Partners recommends that PEP consider using the three management zones shown in Fig. 1 as the basis for tracking and reporting large-scale water quality patterns within the estuary. These zones reflect the pronounced west-to-east (head-to-mouth) water quality gradients that are present in the system, presumably reflecting underlying gradients in nutrient loading and tidal flushing rates (e.g., Gobler 2007). The westernmost zone begins in the tidal reach of the Lower Peconic River and extends eastward to Nassau Point. The central zone extends eastward

Figure 1. Proposed water quality management and reporting zones for the Peconic Estuary.

from Nassau Point to the Greenport ferry terminal on the north prong, Ferry Road on Shelter Island, and the Sag Harbor Bridge on the south prong. The eastern zone extends eastward from those points through Gardiners Bay to Block Island Sound (Fig. 1).

The SWP (Suffolk County 2019) evaluates water quality conditions during the April – October growing seasons over the past 10 years to determine if its proposed targets are being met. Average Secchi depths and 90th percentile chlorophyll-*a* concentrations are used for that purpose. Applying that approach to the period 2009 – 2018, the chlorophyll-*a* and Secchi depth targets proposed in the 2019 SWP were almost always met in the eastern zone, frequently met in the central zone, and rarely or never met in the western zone (Figs. 2 and 3).

IV. Proposed 'stoplight graphics' for tracking/reporting Secchi depths and chlorophyll-a concentrations

Graphics using the green/yellow/red 'stoplight' color scheme can be used to indicate spatial and temporal variations in water quality (e.g., TBEP 2019), with green table cells indicating places and times where targets are clearly met, red indicating places and times where targets are clearly not met, and yellow indicating intermediate or borderline situations. Examples for the three proposed reporting

zones in Peconic Estuary, using SCDHS Secchi depth and chlorophyll-*a* data from the years 1976 through 2018, are presented in Table 1. Growing season median values are shown for both parameters. Nonparametric (distribution-free) 95% confidence intervals were used to determine the green, yellow and red classifications. Median Secchi depth values whose lower 95% confidence limits exceeded the 6.5ft SWP target, and median chlorophyll-*a* values whose upper 95% confidence limits were below the 5.5 μ g/L SWP target, were classified as meeting the target (=green). Median Secchi depth values whose upper 95% confidence limits were below the 6.5ft SWP target, or fidence limits were below the 6.5ft SWP target, and median chlorophyll-*a* values whose upper 95% confidence limits were below the 6.5ft SWP target, and median chlorophyll-*a* values whose lower 95% confidence limits were below the 5.5 μ g/L SWP target. Median Secchi depth values whose lower 95% confidence limits were below the 6.5ft SWP target, and median chlorophyll-*a* values whose lower 95% confidence limits were above the 5.5 μ g/L SWP target. Were classified as failing to meet the target (=red). Median values whose upper and lower 95% confidence intervals bracketed a target were classified as intermediate or indeterminate (=yellow).

Estuary	YY	Median	Median	Estuary	YY	Median Chl=a	Median	Estuary	YY	Median Chl=a	Median
Segment	ΥΥ	Chl=a (µg/L)	Secchi Depth (ft)	Segment	ŶŶ	chi=a (μg/L)	Secchi Depth (ft)	Segment	ŶŶ	Chi=a (μg/L)	Secchi Depth (Fft)
West	1976	22.2	3.5	Central	1976			East	1976		
West	1977		3.0	Central	1977			East	1977		
West	1978		5.0	Central	1978			East	1978		
West	1979		4.0	Central	1979			East	1979		
West	1980			Central	1980			East	1980		
West	1981		5.0	Central	1981			East	1981		
West	1982			Central	1982			East	1982		
West	1983			Central	1983			East	1983		
West	1984			Central	1984			East	1984		
West	1985		2.5	Central	1985			East	1985		
West	1986		4.0	Central	1986		5.0	East	1986		6.5
West	1987		4.0	Central	1987		3.5	East	1987		5.0
West	1988	12.6	3.5	Central	1988	12.0	4.5	East	1988	7.5	6.0
West	1989	5.0	7.0	Central	1989	4.6	7.0	East	1989	4.5	8.0
West	1990	4.2	5.0	Central	1990	3.5	7.0	East	1990	3.0	8.5
West	1991	6.0	3.5	Central	1991	8.6	3.3	East	1991	5.0	6.0
West	1992	4.0	4.0	Central	1992	3.2	5.5	East	1992	2.5	7.5
West	1993	3.8	4.5	Central	1993	3.0	6.5	East	1993	2.8	7.5
West	1994	3.5	5.5	Central	1994	2.7	7.5	East	1994	2.4	8.5
West	1995	6.9	4.0	Central	1995	4.8	5.5	East	1995	2.9	7.0
West	1996	7.4	5.5	Central	1996	3.9	7.5	East	1996	3.0	8.5
West	1997	7.8	5.5	Central	1997	4.1	7.0	East	1997	3.2	9.5
West	1998	3.8	5.5	Central	1998	2.6	7.0	East	1998	2.1	
West	1999	3.4	5.5	Central	1999	2.2	7.5	East	1999	1.6	8.0
West	2000	3.2	5.0	Central	2000	1.6	7.0	East	2000	1.2	8.0
West	2001	4.1	5.0	Central	2001	2.4	7.0	East	2001	1.9	8.0
West	2002	3.8	5.5	Central	2002	3.1	7.0	East	2002	2.5	8.0
West	2003	4.3	5.0	Central	2003	2.3	9.0	East	2003	2.4	8.0
West	2004	4.4	5.0	Central	2004	2.5	7.5	East	2004	2.8	8.0
West	2005	3.9	5.5	Central	2005	1.9	7.5	East	2005	1.5	8.0
West	2006	4.8 4.7	6.0 6.0	Central	2006	2.9	8.0	East	2006	2.7	8.5
West	2007 2008	4.7	5.5	Central	2007 2008	3.8 2.9	7.0	East	2007 2008	3.3	8.5
West		4.8		Central		2.9	7.0	East		2.4	
West	2009 2010	<u>4.3</u> 9.0	5.0	Central	2009 2010	4.5	7.3	East	2009	2.2	9.0
West West	2010	9.0 4.9	5.0 5.0	Central Central	2010	2.8	6.5 7.0	East East	2010 2011	2.8	9.0 8.0
	-	3.9			-	-	6.0		-		
West West	2012 2013	5.1	5.0 6.5	Central	2012 2013	2.7 3.1	7.5	East East	2012 2013	2.1	7.0 9.0
			6.0	Central							
West	2014 2015	3.2 2.6	5.5	Central	2014 2015	2.3 1.9	7.0 6.5	East	2014 2015	1.9 1.5	8.0 9.0
West	2015			Central	2015	2.4	6.0	East	2015	1.5 2.2	
West	2016	3.6 6.7	4.5 4.0	Central	2016	3.3	6.0	East	2016	2.2	7.5 8.0
West West	2017	5.4	5.0	Central Central	2017	2.3	6.0	East East	2017	2.1	7.5

Table 1. Stoplight graphic summarizing attainment of the proposed Secchi depth and chlorophyll-*a* targets in the three Peconic Estuary reporting zones for the years 1976 – 2018. Data source: SCDHS

V. Proposed 'stoplight graphic' for tracking/reporting Enterococcus levels at swimming beaches

As noted on the Suffolk County website (https://www.suffolkcountyny.gov/Departments/Health-Services/Environmental-Quality/Ecology/Beach-Monitoring-Program), water quality at swimming beaches can be adversely affected by episodic sources such as stormwater runoff, wastewater discharges from boats or land-based septic systems, and fecal material from pets and wildlife. In order to provide information on the potential presence of pathogens public in swimming areas that may be impacted by such contamination, the Suffolk County Department of Health Services (SCDHS) conducts a comprehensive bathing beach water quality monitoring program from May through September each year. Sampling is performed by SCDHS staff, with analyses conducted by the Department's accredited Public and Environmental Health Laboratory (PEHL).

As with the example above, information from this monitoring program can also be summarized in 'stoplight' form, to allow the frequency of *Enterococcus*-based beach closures to be summarized and tracked. An example of this approach is shown in Table 2, for the years 2010 through 2018. Numbers in the table cells represent the number of *Enterococcus*-related beach closures (due to exceedances of the 104 cfu/100 ml criterion) that occurred in a given year. Years with zero closures are shown as green, those with one closure are shown as yellow, and those with more than one closure are shown as red. In this data set the Founders Landing beach stands out as experiencing a substantially larger number of closures than the other locations sampled.

Beach Name	2010	2011	2012	2013	2014	2015	2016	2017	2018	Subtotals
Alberts Landing Beach	0	0	0	0	0	0	0	0	1	1
Camp Blue Bay Beach	0	0	0	0	0	0	0	0	1	1
Camp Quinipet Beach	0	1	0	0	0	2	1	0	1	5
Clearwater Beach	0	0	0	0	0	0	0	0	1	1
Cornell Cooperative Extension Marine Center Beach	0	0	0	0	0	0	0	0	0	0
Crescent Beach - Shelter Island	0	0	0	0	0	0	0	1	0	1
Culloden Shores Beach	0	0	0	0	0	0	0	0	0	0
Devon Yacht Club Beach	0	0	0	0	0	0	1	0	1	2
East Lake Drive Beach	0	0	0	0	0	0	0	0	0	0
Fifth Street Park Beach	0	0	0	0	0	2	0	2	1	5
Fleets Neck Beach	0	1	0	0	0	0	0	0	0	1
Foster Memorial Beach	0	0	0	0	0	0	0	0	0	0
Founders Landing Beach	2	1	1	1	0	0	1	3	1	10
Goose Creek Beach	1	0	1	0	0	0	0	0	0	2
Havens Beach	2	1	0	0	0	0	0	0	0	3
Maidstone Beach	0	0	0	1	0	0	0	0	0	1
Meschutt Beach	0	0	1	0	0	0	1	0	1	3
Nassau Point Causeway Beach	0	1	0	0	0	0	0	1	1	3
New Suffolk Beach	0	1	0	0	0	0	0	0	0	1
Norman E. Klipp Park Beach	0	0	0	0	1	0	0	1	0	2
Perlman Music Camp Beach	0	0	0	0	0	0	1	0	1	2
Pridwin Hotel Beach	1	1	0	0	0	0	0	0	1	3
Shelter Island Heights Beach Club Beach	0	0	1	0	0	0	0	0	1	2
Silver Sands Motel Beach	0	1	0	1	0	0	0	0	2	4
South Jamesport Beach	1	0	1	0	0	0	0	0	2	4
Southampton Peconic Beach & Tennis Club Beach	0	0	0	1	0	0	0	0	0	1
Veteran's Memorial Park Beach	0	1	0	2	0	0	0	0	1	4
Wades Beach	0	0	0	0	0	0	0	1	0	1

Table 2. Frequencies of Enterococcus-related Peconic Estuary beach closures for the years 2010 through 2018. (Data source: SCDHS)

VI. Next Steps

The issues identified by the TAC at its December 4, 2019, meeting will require additional consideration and evaluation prior to the finalization of targets. As noted above, these evaluations and decisions by the TAC are due to be completed before the planned September 2020, PEP conference. The TAC should assign timelines and responsible parties to each of the issues identified as requiring additional consideration as a first and critical step in order to meet the September 2020 due date.

The methods that PEP selects for measuring and reporting levels of attainment of its water quality targets will need to be based on statistical considerations. Environmental monitoring data rarely follow the symmetric, bell-shaped 'normal' distribution that underlies the most frequently-used statistical procedures. Field measurements of many water quality parameters, such as chlorophyll-*a*, nutrient and potential toxin concentrations, are typically skewed rather than symmetric. They frequently contain 'outliers' (values that are substantially larger than the bulk of the data), and often appear to follow a lognormal, gamma or other 'non-normal' distribution (e.g., Gilbert 1987). In addition, monitoring data are often 'censored' due to the presence of nutrient or chemical concentrations that are less than laboratory detection limits ('left censoring') or to values that are known to be greater than the measured values ('right censoring')(e.g., Millard 2013). Right censoring is common in Secchi depth data from shallow-water areas, where the disk is often visible to the bay bottom. In such cases the Secchi depth is known to be larger than the observed value, but its true value is unknown (e.g., Carstensen 2010).

Right-censoring occurs frequently in the SCDHS Secchi depth data, particularly at shallow-water stations. The median Secchi depths and 95% confidence limits used to generate Table 1 and Figure 2 were therefore calculated using the Kaplan-Meier method (Barker 2009), which was developed for analysis of right-censored data and provides nonparametric (distribution-free) maximum likelihood parameter estimates (Allison 1995). Other analytical options are also available (e.g., Carstensen 2010), and could be explored by the TAC.

Left-censoring is not an issue with the SCDHS chlorophyll-*a* data used to produce Table 1 and Figure 3, but the data sets for each year and estuary section contain numerous outliers, are highly skewed and are clearly non-normal. This does not affect calculations of median values, but nonparametric, distribution-free methods were used to calculate 95% confidence limits for the annual medians to evaluate target attainment and non-attainment for Table 1.

The provisional Secchi depth and chlorophyll-*a* targets discussed above are based on median values (rather than means or other potential choices such as 80th or 90th percentiles), in recognition of the statistical robustness of medians when applied to skewed, censored and otherwise 'non-normal' data. In some situations, however, other estimators may have advantages that outweigh these desirable characteristics and could be evaluated during the target selection process. For example, median values are appropriate for estimating 'average' water conditions that occur throughout the growing season of a given year. But for living resources that respond strongly to shorter-term phenomena, such as episodic phytoplankton blooms that may affect chlorophyll-*a* concentrations, Secchi depths and other water quality parameters for only a portion of the growing season, other estimators may prove to be more helpful for tracking water quality conditions that are most relevant to them.

In addition to these statistical concerns the TAC may also wish to consider several resource management issues, either during the process of finalizing the initial water quality targets or in future years when the performance and usefulness of the selected targets can be assessed. Potential issues here include:

- The possible need for different water clarity targets to support restoration of former vs. protecting existing eelgrass beds, and for maintaining eelgrass beds in waters experiencing varying levels of temperature stress and/or eutrophication. Numerous studies (reviewed by Kenworthy et al. 2014) have shown that eelgrass beds growing in more eutrophic conditions, for example, can have water clarity and light requirements that are substantially higher than those in less eutrophic sites.
- In addition to the three proposed water quality management and reporting zones shown in Figure 1, it may also be helpful to develop water quality targets, and monitoring and assessment strategies, for the smaller embayments within each zone. A citizen science program could potentially be developed to provide water quality samples and other information from the embayments, which may be difficult to include in the existing SCDHS monitoring program due to cost constraints.
- The effects of global climate change on water temperature, dissolved oxygen and pH levels in the estuary, and their potential impacts on living resources such as native fish, shellfish and aquatic plants. As the climate continues to change, monitoring strategies will need to adapt and adaptive management practices will become increasingly necessary for resource management programs (e.g., https://www.epa.gov/arc-x/climate-adaptation-and-estuaries).

VII. References

Allison, P.D. 1995. Survival Analysis Using SAS: A Practical Guide. SAS Institute, Cary, NC. 292 pp.

Barker, C. 2009. The mean, median and confidence intervals of the Kaplan-Meier survival estimate: Computations and applications. American Statistician 63:78-80.

Carstensen, J. 2010. Censored data regression: Statistical methods for analyzing Secchi transparency in shallow systems. Limnology and Oceanography: Methods 8:376-385.

Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold Company, N.Y. 320 pp.

Gobler, C. 2007. Water quality in Long Island's estuaries: South Shore Estuary Reserve, Peconic Estuary and Long Island Sound. pp. 21-26 *in:* New York Seagrass Meeting, May 22, 2007. Meeting Proceedings and Priority Recommendations.

https://seagrant.sunysb.edu/Images/Uploads/PDFs/SeagrassMeeting07-Proceedings.pdf

Kenworthy, W.J., et al. 2014. Dependence of eelgrass (*Zostera marina*) light requirements on sediment organic matter in Massachusetts coastal bays: Implications for remediation and restoration. *Mar. Pollut. Bull.* 83:446-57.

Millard, S.P. 2013. EnvStats: An R Package for Environmental Statistics. Springer, N.Y. DOI: 10.1007/978-1-4614-8456-1.

Suffolk County Department of Health Services (SCDHS). 2019. Draft Subwatersheds Wastewater Plan. Prepared by CDM Smith, June 2019. https://reclaimourwater.info/TheSubwatershedsWastewaterPlan.aspx

Tampa Bay Estuary Program (TBEP). 2019. Tampa Bay water quality assessment for 2018. TBEP, St. Petersburg, FL.

https://www.tbeptech.org/TBEP_TECH_PUBS/2019/TBEP_01_19_2018_Decision_Matrix_Update_FINAL_.pdf.

APPENDIX A

Information on SCDHS/Peconic Estuary Program stations

Station Number	Station Name	Distance from Peconic River dam (km)	Mean Depth (ft) 2009 - 2018	First Year Sampled	Median Growing Season Secchi depth (ft) 2009-2018	N_OBS Secchi 2009 - 2018	Secchi VOB % 2009 - 2018	90 th percentile Growing Season [Chla] ug/L 2009 - 2018
60101	East Creek (South Jamesport)	12.6	6.2	1994	5.0	73	16%	21.3
60102	Cutchogue Harbor	23.8	11.5	1994	5.0	69	1%	9.4
60103	East Creek (Cutchogue)	24.2	6.9	1994	5.0	68	25%	8.6
60104	North Sea Harbor	25.3	10.2	1994	6.0	68	12%	7.1
60105	Hog Neck Bay North	27.3	19.1	1994	6.3	40	0%	4.3
60106	Goose Creek	30.2	8.3	1994	7.0	67	36%	6.6
60107	Town Creek	30.6	9.7	1994	7.0	66	26%	9.0
60109	Mill Creek (Hashamomuck Pond)	32.6	7.7	1994	6.0	71	28%	4.1
60111	Greenport Harbor	37.7	26.7	1994	7.5	64	0%	6.7
60113	Little Peconic Bay	25.1	33.8	1985	5.5	96	0%	7.3
60114	Paradise Point	32.6	71.9	1985	7.5	99	0%	5.6
60115	Orient Harbor	40.7	22.7	1985	8.0	97	0%	6.2

60116	Gardiner's Bay West	41.8	14.1	1986	10.0	93	24%	4.6
60118	Northwest Harbor	40.3	23.6	1986	9.5	95	4%	5.1
60119	West Neck Bay	34.7	12.0	1987	5.8	84	6%	17.5
60121	Noyack Bay	33.2	24.2	1987	7.0	97	0%	6.0
60122	Coecles Harbor	38.8	7.9	1992	7.0	75	39%	7.7
60124	West Neck Harbor	34.5	10.5	1994	5.0	74	11%	6.4
60126	Sag Harbor	36.8	11.3	1994	7.0	71	15%	7.5
60127	Sag Harbor Cove	35.8	7.2	1994	6.0	70	34%	7.8
60130	Great Peconic Bay	17.2	21.3	1976	6.0	93	0%	8.1
60131	Northwest Creek	40.3	9.9	1994	9.0	51	49%	4.9
60132	Three Mile Harbor	46.3	12.5	1994	10.0	46	30%	5.1
60133	Acabonac Harbor	50.0	6.9	1994		48	83%	3.9
60134	Napeague Harbor	56.6	7.7	1994		44	89%	4.0
60135	Lake Montauk	68.2	8.9	1994		46	76%	3.8
60137	Gardiner's Bay Central	47.8	32.3	1996	10.0	30	0%	4.9
60148	Bullhead Bay	22.7	4.5	1998	6.0	67	70%	6.1
60170	Flanders Bay	10.7	9.0	1976	6.0	126	11%	13.2
60210	Reeves Bay	8.3	6.8	1976	6.0	73	38%	17.5
60220	Meetinghouse Creek	8.7	8.9	1976	4.5	104	5%	70.3

60230	Terrys Creek	8.2	8.1	1976	5.0	41	17%	30.4
60240	Peconic River Mouth	8.0	7.2	1976	5.0	134	10%	24.2
60250	Sawmill Creek	7.0	5.1	1976	5.0	40	48%	26.4
60260	Peconic River (no Chla data 2009-2018)	6.9	7.8	1976	4.0	33	3%	
60265	Peconic River (no Chla data 2009-2018)	6.3	8.0	2015	3.5	33	0%	
60266	Peconic River (no Chla data 2009-2018)	6.3	7.8	2015	3.3	14	0%	
60270	Peconic River (no Chla data 2009-2018)	5.7	9.3	1976	3.0	33	0%	
60275	Peconic River (no Chla data 2009-2018)	5.3	9.2	2015	3.0	33	0%	
60290	Cold Spring Pond	21.5	6.3	2002		53	77%	4.1
60300	Wooley Pond	26.9	8.5	2002	7.0	52	33%	7.8
60310	Noyack Creek	30.6	8.9	2002	7.0	50	36%	8.1
60320	Mill Creek	32.1	8.2	2002	7.0	54	35%	8.5
60330	Hallocks Bay	45.2	6.9	2001		53	74%	4.3
60340	Hashamomuck Pond 1	32.8	7.6	2001	7.0	51	43%	5.3

Josh Halsey PLT 631 283-3195 Joshhedsey 2 pedomic	Cassie Bauer NYSDEC 1031-444 0474 Cassandra. hover@0	Kathleen Fallon NYSG 631-632-8730 Kmf 228 @ corne	Elizabeth Homstein PEP	Lauven Scheer PEP	Brian Frank Tow of East Hayten 324-2178 brank@ Champlen	Par Ainen Pepe	11, Chael Mind 1 1000 of Journal 6 31 - 10 0 1 100 Mindre 11 (0110)
Joshhadsen @ pecomic land frest.org	Cassandra, haver@dec.ny.ga	Kmf 228 @ cornell.ed			borunk @ Ohemplenny. gov		MICHARIT (011.1) W WAY JOUT TURINI VI

•

1

.

.

	Brad Peterson	Julie (fournance	Chris Clam	Corey Humphrey	Reborah Aller	Swah Schader	NAME
1/2 1/ Jul	Stony Break	Central finebarres	TNC	Swed	LLE		AFFILIATION
IC WALLAN TICLO	631-632- 5044	Central finebarrega (631) 18-1192					PHONE
middle for the on the on the	bradley, peterson @ stonybrook.edu	havgrave@pb.state. my. us	Celap & fac. org	COREY. HUMPIPELY @ JUSTERCOUTY MY. 6-00	da 352 Comelledu		E-MAIL

PECONIC MANDO,

SIGN-IN SHEET: PEP TAC Meeting Maxine S. Postal Auditorium 300 Center Drive Riverhead, NY 11901 December 4, 2019 10:00 AM

			τ'-EVA.	Aimec Boucher - ENA.
	Extension		o- Wayemann -	Mour: Scott Curatolo-Wagemann-Comell Cooperative
				-
			Say Harbor Committee	Mary Ann Eddy
	Cambo Salazar Rathale County ny - you	6318535952	SCDEDP	Comilo Salazar
	Jonathan. Satelle Sutcelt conty NY. you	631-853-5926	SCEDP	5
	holly.s. greening@ guail.com		Westing Prtury	Holly amening
	genold. nonitane gueil. cour		CoastWise Prtm	LEROLD JUDRINSOND
	blamoureux Banchorgea. com	201-571-0416	Ancher QEA	Beth Lamoureux
	Kristin, Krazeski @dec.ny.gov	631-941-7205	NYSDEC	Kristin Kraseski
	michele.goldenedec.ny.gov	518-402-8225	NYS DCC	Michele Golden
	MICHAEL-JENSEN & SUFFLICCOUNTY NY. God	631-853-5760	Scohj	MIKE JENSEN
	KEN. 26HELL SUFFORCE ANT NY 600	631 852 5809	Stors	VEN ZEGEL
	Schubert@ USgs. gov	631-736.0783	5950	Chiris Schubert
in a	Joyce Novarle Soffolkcounty my ofg	631-852-2396	PEP	Jour Nertal
	MS372@Cornell.edu	631-727-7850	CCE-TACCher	Matthew Schefeni
	E-MAIL	PHONE	AFFILIATION	NAME